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Course description
This course of reading is an introduction to classical texts and contemporary issues in the philosophy of
mathematics. The course begins with Gottlob Frege’s Grundlagen der Arithmetik, which initiated the analytic
approach to these questions. It proceeds with an overview of the major schools of thought during the
foundational crisis of mathematics in the early twentieth century and their respective downfalls, culminating
in Gödel’s incompleteness proofs. The second half of the course deals with current concerns in the philosophy
of mathematics, including the metaphysical status of mathematical objects and the rise of structuralism and
naturalism. We conclude with a reflection on what we should want from a foundation for mathematics and
whether we can have it.

Evaluation
There will be two midterm papers of 1500–2000 words each and a final paper of 2000–2500 words.
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